class Solution { public int maximumInvitations(int[] favorite) { int n = favorite.length; List<List<Integer>> graph = new ArrayList<>(); for (int i = 0; i < n; i++) { graph.add(new ArrayList<>()); } int[] in = new int[n];// 获取所有节点入度 for (int i = 0; i < n; i++) { graph.get(i).add(favorite[i]); in[favorite[i]]++; } LinkedList<Integer> queue = new LinkedList<>();// 把入度为零的节点加入队列 for (int i = 0; i < n; i++) { if (in[i] == 0) { queue.addLast(i); } } while (!queue.isEmpty()) {// 队列为空后,如果还有入度不为零的节点,他们将成环 int cur = queue.removeFirst(); for (int next : graph.get(cur)) { if (--in[next] == 0) { queue.addLast(next); } } } int ans = 0; boolean[] visited = new boolean[n]; HashMap<Integer, Integer> map = new HashMap<>();// 获取双向奔赴的两个节点 for (int i = 0; i < n; i++) { if (in[i] == 1 && !visited[i]) { int cur = i; int cnt = 0; while (!visited[cur]) { cnt++; visited[cur] = true; cur = favorite[cur]; } if (cnt > 2) { ans = Math.max(ans, cnt);// 如果当前环是多人首尾相连,那么答案可能在其中,取最大 } else { map.put(i, favorite[i]);// 双向奔赴 } } } graph = new ArrayList<>();// 构建反图,为了获取从双向奔赴节点到最远端节点的距离 for (int i = 0; i < n; i++) { graph.add(new ArrayList<>()); } for (int i = 0; i < n; i++) { graph.get(favorite[i]).add(i); } int best = 0;// 所有双向奔赴节点都可以参与会议 for (Map.Entry<Integer, Integer> entry : map.entrySet()) { int i = entry.getKey(); int j = entry.getValue(); // 从双向奔赴节点两侧各自宽度优先遍历,获取最大深度 queue.add(i); int level = 0; while (!queue.isEmpty()) { int size = queue.size(); while (size-- > 0) { int cur = queue.removeFirst(); for (int next : graph.get(cur)) { if (next != j) { queue.addLast(next); } } } level++; } queue.add(j); while (!queue.isEmpty()) { int size = queue.size(); while (size-- > 0) { int cur = queue.removeFirst(); for (int next : graph.get(cur)) { if (next != i) { queue.addLast(next); } } } level++; } best += level; } return Math.max(ans, best);// 返回(多人首尾相连最大值) 与 (双向奔赴节点集群累加和)的最大值 } }