封面

版权信息

序言

NOTE

在人工智能发展早期,机器学习的技术内涵几乎全部是符号学习。可是从二十世纪九十年代开始,统计机器学习犹如一匹黑马横空出世,迅速压倒并取代了符号学习的地位。

2024-04-23 07:16:40

NOTE

但它们真的代表了机器学习的新的方向吗?包括本书作者周志华教授在内的一些学者认为:深度学习掀起的热潮也许大过它本身真正的贡献,在理论和技术上并没有太多的创新,只不过是由于硬件技术的革命,计算机的速度大大提高了,使得人们有可能采用原来复杂度很高的算法,从而得到比过去更精细的结果

2024-04-23 07:17:48

NOTE

机器学习研究出现以来,我们看到的主要是从符号方法到统计方法的演变,用到的数学主要是概率统计。

2024-04-23 07:22:58

NOTE

符号机器学习时代主要以离散方法处理问题,统计机器学习时代主要以连续方法处理问题。

2024-04-23 07:19:04

NOTE

大数据时代的出现,有没有给机器学习带来本质性的影响?理论上讲,似乎“大数据”给统计机器学习提供了更多的机遇,因为海量的数据更加需要统计、抽样的方法。

2024-04-23 07:22:47

前言

如何使用本书——写在第十次印刷之际

主要符号表

第1章 绪论

1.1 引言

1.2 基本术语

1.3 假设空间

1.4 归纳偏好

1.5 发展历程

1.6 应用现状

1.7 阅读材料

习题

参考文献

休息一会儿

第2章 模型评估与选择

2.1 经验误差与过拟合

2.2 评估方法

2.3 性能度量

2.4 比较检验

2.5 偏差与方差

2.6 阅读材料

习题

参考文献

休息一会儿

第3章 线性模型

3.1 基本形式

3.2 线性回归

3.3 对数几率回归

3.4 线性判别分析

3.5 多分类学习

3.6 类别不平衡问题

3.7 阅读材料

习题

参考文献

休息一会儿

第4章 决策树

4.1 基本流程

4.2 划分选择

4.3 剪枝处理

4.4 连续与缺失值

4.5 多变量决策树

4.6 阅读材料

习题

参考文献

休息一会儿

第5章 神经网络

5.1 神经元模型

5.2 感知机与多层网络

5.3 误差逆传播算法

5.4 全局最小与局部极小

5.5 其他常见神经网络

5.6 深度学习

5.7 阅读材料

习题

参考文献

休息一会儿

第6章 支持向量机

6.1 间隔与支持向量

6.2 对偶问题

6.3 核函数

6.4 软间隔与正则化

6.5 支持向量回归

6.6 核方法

6.7 阅读材料

习题

参考文献

休息一会儿

第7章 贝叶斯分类器

7.1 贝叶斯决策论

7.2 极大似然估计

7.3 朴素贝叶斯分类器

7.4 半朴素贝叶斯分类器

7.5 贝叶斯网

7.6 EM算法

7.7 阅读材料

习题

参考文献

休息一会儿

第8章 集成学习

8.1 个体与集成

8.2 Boosting

8.3 Bagging与随机森林

8.4 结合策略

8.5 多样性

8.6 阅读材料

习题

参考文献

休息一会儿

第9章 聚类

9.1 聚类任务

9.2 性能度量

9.3 距离计算

9.4 原型聚类

9.5 密度聚类

9.6 层次聚类

9.7 阅读材料

习题

参考文献

休息一会儿

第10章 降维与度量学习

10.1 k近邻学习

10.2 低维嵌入

10.3 主成分分析

10.4 归纳偏好

10.5 流形学习

10.6 度量学习

10.7 阅读材料

习题

参考文献

休息一会儿

第11章 特征选择与稀疏学习

11.1 子集搜索与评价

11.2 过滤式选择

11.3 包裹式选择

11.4 嵌入式选择与L1正则化

11.5 稀疏表示与字典学习

11.6 压缩感知

11.7 阅读材料

习题

参考文献

休息一会儿

第12章 计算学习理论

12.1 基础知识

12.2 PAC学习

12.3 有限假设空间

12.4 VC维

12.5 Rademacher复杂度

12.6 稳定性

12.7 阅读材料

习题

参考文献

休息一会儿

第13章 半监督学习

13.1 未标记样本

13.2 生成式方法

13.3 半监督SVM

13.4 图半监督学习

13.5 基于分歧的方法

13.6 半监督聚类

13.7 阅读材料

习题

参考文献

休息一会儿

第14章 概率图模型

14.1 隐马尔可夫模型

14.2 马尔可夫随机场

14.3 条件随机场

14.4 学习与推断

14.5 近似推断

14.6 话题模型

14.7 阅读材料

习题

参考文献

休息一会儿

第15章 规则学习

15.1 基本概念

15.2 序贯覆盖

15.3 剪枝优化

15.4 一阶规则学习

15.5 归纳逻辑程序设计

15.6 阅读材料

习题

参考文献

休息一会儿

第16章 强化学习

16.1 任务与奖赏

16.2 K-摇臂赌博机

16.3 有模型学习

16.4 免模型学习

16.5 值函数近似

16.6 模仿学习

16.7 阅读材料

习题

参考文献

休息一会儿

附录

A 矩阵

B 优化

C 概率分布

后记